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ABSTRACT

This paper presents a novel approach to automatic grasp se-
lection for active hand exoskeletons and prosthetic hands
that utilize depth maps in addition to RGB images. Prior
research has only correlated objects to grasps using RGB
data with Convolutional Neural Networks (CNN). How-
ever, depth estimation has improved significantly and unique
depth-based features of objects can add valuable informa-
tion on grasp selection. We used the labeled datasets from
DeepGrasping and ImageNet for training and the Hand-
Cam dataset for testing, achieving improvements in grasp
classification accuracy and more robust grasp selection de-
spite imbalanced training datasets. The results highlight
the potential of deep learning to improve dexterous ma-
nipulation. Code is available at https://github.com/
wish2023/Dexterous-manipulation-via-vision
and https://github.com/roshho/tempDL. Data is
available from [1]

1. INTRODUCTION

Of the 25% of population that experiences stroke, 50-80%
experience upper body extremity impairment in acute phase
and 40-50% of patients continue to experience upper body
immobility in sub-acute phase. Despite improved affordabil-
ity from soft robotics applied to stroke rehabilitation, 75%
of caregivers [2] and patients who experienced greater spinal
cord deterioration are still unable to leverage rehabilitation
to improve conditions, indicating a need for non-invasive or-
thotics.

2. RELATED WORK

Recent research [2] [3] [4] in the field have demonstrated in-
terest and potential from interpreting EMG signal; however
the studies are either limited in accuracy or limited to inter-
preting for two or three grasps instead of the commonly used
five or six [5]. Combinations of alternate readings, such as
EEG [3], has shown great promise, though possibly less prac-
tical. This paper seeks to explore employing computer vi-
sion in place of EMG and EEG, identifying the efficacy of
mapping images and depth maps of an array of objects to 5
commonly used daily grasps: Key, Pinch, Power, Three Jaw
Chuck, and Tool.

3. DATASETS

The datasets used in this study build upon prior work by [1]
and are tailored for the evaluation of grasp recognition:

3.1. DeepGrasping Dataset

The DeepGrasping dataset [6] includes 1,035 images of 280
objects, each with a resolution of 640 × 480 pixels. Objects
were annotated with one of five grasps based on their most
natural fit. A significant bias exists in the dataset, as the power
grasp dominated, while key and tool grasps were hardly rep-
resented. This bias motivated the creation of more balanced
datasets.

3.2. ImageNet-derived Dataset

Due to the lack of representation from the key and tool grip
in the DeepGrasping dataset, a dataset was curated from Im-
ageNet [7], containing 5,180 images grouped into 25 object
categories, such as balls, scissors, and utensils. Each image
was labeled with the most appropriate grasp, emphasizing
balanced representation across all grasp types. This dataset
fills the gaps in the representation of key and tool grasps. The
power grasp still remains a dominant class.

3.3. HandCam Testing Dataset

The HandCam dataset was specifically created by [1] for test-
ing. This dataset comprises of 250 images of 50 objects,
captured using a prosthetic hand camera. Unlike the other
datasets, each grasp type is uniformly represented, with ten
objects chosen per grasp and photographed from five different
perspectives. This dataset is exclusively used for evaluation,
ensuring the model is tested on unseen, out-of-distribution
data.

Table 1 highlights the percentage distribution of grasps
across all datasets. The DeepGrasping and ImageNet datasets
were used to train the classification model, while the Hand-
Cam dataset was used for testing.

4. EXTRACTING DEPTH MAPS

Depth maps were generated using [8], a monocular depth esti-
mation model. This method was trained in both a supervised
and unsupervised fashion. The approach incorporated data



DeepGrasping ImageNet HandCam
Train/Test Train Train Test

Grasp
Key 0.0 % 11.8 % 20.0 %

Pinch 21.8 % 10.6 % 20.0 %
Power 47.0 % 47.5 % 20.0 %

Three Jaw Chuck 28.0 % 19.2 % 20.0 %
Tool 3.2 % 10.9 % 20.0 %

Table 1. Distribution of training and test data. The power
grasp is a dominant class in the training set, with 47.5% of
samples having a power label

augmentation techniques to obtain more robust features. The
approach also extracts priors from pre-trained encoders to fur-
ther boost model understanding, make it a reliable framework
to use for our downstream task of hand grasp classification.

5. MODEL ARCHITECTURES

We created three models for our experiments: the RGB
ResNet50 baseline, the extended RGB-D ResNet50, and the
ResNet50 + Depth Fusion model:.

5.1. RGB ResNet50

ResNet50 is a pretrained model used for image classification
tasks of RGB images [9]. It consists of a a series of convo-
lutions and residual connections. These act as skip connec-
tions to mitigate the vanishing gradient problem, allowing for
better training in earlier layers of the network. The classi-
fication head of ResNet50 was modified to predict between
the 5 classes of various grips (“3 jaw chuck,” “key,” “pinch,”
“power,” and “tool”).

5.2. RGB ViT-B-16

ViT-B-16 is a pre-trained transformer model made with 12
attention heads, 768 hidden dimensions,, 12 transformer lay-
ers, and 86M paramters. While this model doesn’t have the
largest pixel patch size, it function as a good compromise for
compute power and good performance. This has been adapted
to assign 5 types of grasps (“3 jaw chuck,” “key,” “pinch,”
“power,” and “tool”), trained on DeGol’s labeled data.

5.3. RGB-D ResNet50

To incorporate depth information, the ResNet50 model was
modified to accept four-channel inputs (RGB + Depth). This
was done by adjusting the input channels to four in the first
convolutional layer. The weights of the first 3 channels were
frozen to the default RGB weights, while the fourth channel
weights were randomly initialized. The remaining architec-
ture is identical to the original ResNet50, with the classifica-
tion head adapted with 5 output neurons.

Fig. 1. RGB-D ResNet50 input kernel: A new input channel
for depth is added. The RGB channels maintain their pre-
trained weights before finetuning, while the weights of the
input depth channel are randomly initialized. Kernel diagram
created by [10].

5.4. RGB-D ViT

Similar to RGB-D ResNet50, an additional channel was
added to account for depth channel to train RGB + depth
data. In this context, the most standard ViT with no pre-
trained weights was used in hopes to have the best efficacy
with no affect from weights trained on RGB data.

The ViT architecture also uses 16x16 patches with 12 at-
tention heads.

5.5. ResNet50 + Depth Fusion

This approach was designed to obtain depth-specific fea-
tures, similar to how ResNet50 extracts RGB specific fea-
tures. The RGB channels are passed through the original
ResNet50 backbone, while the depth data is processed by an
autoencoder network to extract high-level features. Before
classification, the encoded depth features are concatenated
with the flattened ResNet50 features before being passed to a
classification head.

Fig. 2. Depth Fusion: The autoencoder (above) is trained to
reconstruct the depth map, which act as pre-trained depth fea-
tures. The encoder is utilized as a backbone to extract depth
features. Concurrently, the ResNet50 backbone (below) pro-
cesses RGB channels. RGB and depth features are then con-
catenated before being passed to FC (classification head). Au-
toencoder diagram by [11], ResNet diagram by [12]



5.5.1. Depth Autoencoder

The depth autoencoder consists of an encoder and a decoder.
The encoder applies convolutionals to the input to extract a
compact and high-level representation of the depth map. The
decoder attempts to reconstruct the original depth map from
the bottleneck layer (the encoded features) using deconvo-
lutions. During training, the network aims to minimize the
mean squared error between the reconstructed image, and the
input image. Once the autoencoder is trained to successfully
reconstruct depth maps, the encoder is used as a depth fea-
ture extractor, generating a fixed-length feature vector (length
512) for fusion with the RGB features from the ResNet back-
bone.

6. TRAINING DETAILS

The CNN models were trained using a single Nvidia Tesla T4
on the following hyperparameters:

• Number of Epochs: 100.

• Batch Size: 64.

• Learning Rate: 1× 10−3.

• Optimizer: Adam optimizer with β1 = 0.9 and β2 =
0.999.

• Loss Function: Cross-entropy loss.

The ViT models were trained using an Nvidia RTX3060 Lap-
top GPU and on the following hyperparameters:

• Number of Epochs: 10.

• Batch Size: 32.

• Learning Rate: 1× 10−3.

• Optimizer: Adam optimizer weight decay: 0.05.

• Loss Function: Cross-entropy loss.

7. RESULTS

Our results are summarized in Table 2.

Model Accuracy (%)
RGB ResNet50 (Baseline) 79.6
RGB ViT-B-16 (Baseline) 46.8
RGB-D ResNet50 62.8
RGB-D ViT-B-16 38.8
Depth Fusion 82.4

Table 2. Classification accuracy of different models.

The RGB baseline had an accuracy of 79.6%. The ac-
curacy of the RGB-D ResNet50 was 62.8%, indicating that

adding a depth channel to ResNet hinders learning as the RGB
and depth features did not synergize well. This was also the
case with using transformers, where the accuracy dropped
from 46.8% to 38.8%. The sub-optimal performance found
in the ViT models are likely a result of a small training sam-
ple. The inferior performance found in the RGB-D ViT model
has been congruent with existing literature stating worse per-
formance than CNN when analyzing solely depth data [13].
Extracting RGB and depth features independently was the
most successful, as it outperformed the baseline with an ac-
curacy of 82.4%, indicative of robust feature extraction across
all channels.

Fig. 3. Confusion Matrices of the RGB ResNet50 + Depth
Fusion model

Upon examining the confusion matrix of the RGB base-
line architecture in Figure 3, it is expected that the model has
lower precision for the ”Power” class. As mentioned in Ta-



ble 1, this is a dominant class in the training set, making the
model more prone to predicting this class. This is also ev-
ident in the RGB-D ResNet confusion matrix, as the model
is unable to obtain good representations of depth maps, lead-
ing to even more misclassifications of grasps. However, the
precision for the power class significantly improves for the
depth fusion model, which is evident from the confusion ma-
trix. The depth maps provide robust information that cannot
be obtained from RGB channels regarding power grips that
are not only representative but also unique to this class. The
depth fusion model is most confused between key and pinch
grasps. Objects that require these grasps, such as pencils,
cards, or keys, tend to have relatively flat depth maps. As
a result, depth maps do not offer sufficient distinguishing in-
formation, leading to an increased misclassification between
these two grasp types.

8. FAILURE CASES

The best performing model (RGB ResNet50 + depth fusion)
has surpassed the baseline with an accuracy of 82.4% on a
uniformly distributed test. However, there are some cases that
cause this model to make incorrect predictions. As evidenced
by figure 3 and depicted by figure 4, the classifier is easily
confused between key and pinch grasps. This is likely due to
the flatness of their depth maps; it is challenging to identify
unique depth related features from a scattered pile of papers
on a flat surface.

The model also wrongly classifies the grip of a wine glass
to be that of a pinch, rather than a 3 jaw chuck. The cylindrical
nature of the glass hold closely resembles the depth features
of objects typically held with a pinch grip, such as batteries.

Lastly, there are a few instances of the model incorrectly
predicting that an object correlating to a tool grasp should be
assigned a power grip. A common pattern to this misclas-
sification is when the model is exposed to a relatively bulky
object.

9. DISCUSSION

Adding depth in a separate channel, in addition to RGB data,
for mapping grasps as proven to be effective. Further tests
with depth-specific CNN and ViTs need to be conducted to
be find a more optimal model for the dedicated depth fusion
analysis. These results has been congruent with past research
in the prosthetic field, with objectives aiming to improve ob-
ject grasping based on various combinations of multi-modal
inputs [14] [15].
The primary drive for greater improvement is from a larger
dataset with data labeling in a more naturalistic, intuitive
manner. This is contrary to DeGol’s method, requiring partic-
ipants to label grasps to object based on mental visualization
as opposed to recording grasps with motion capture or flex
sensors.

Fig. 4. Some misclassified grasps of the RGB ResNet50 +
Depth Fusion model

10. CONCLUSION

In this project, we explored the effectiveness of combining
depth maps with RGB images to perform automatic grasp se-
lection in prosthetic hands. Our best-performing model was
the ResNet50 + Depth Fusion that achieved an accuracy of
82.4% on a uniformly distributed test set, surpassing the base-



line accuracy of 79.6%. However, failure cases revealed spe-
cific challenges with the model, such as the flatness in depth
maps for certain grasp types (key vs. pinch grasps) and mis-
classifications influenced by object shape and size.

This highlights the importance of extracting richer depth
features and perhaps even integrating more modalities to im-
prove the model’s ability to distinguish similar grasps across
similar objects. Future work could focus on further exploring
vision transformers and expanding the dataset to better repre-
sent certain grasps, improving the applicability for prosthetic
hand control.
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